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The stability of dynamical states characterized by a uniform firing rate �splay states� is analyzed in a network
of N globally pulse-coupled rotators �neurons� subject to a generic velocity field. In particular, we analyze
short-wavelength modes that were known to be marginally stable in the infinite N limit and show that the
corresponding Floquet exponent scale as 1 /N2. Moreover, we find that the sign, and thereby the stability, of
this spectral component is determined by the sign of the average derivative of the velocity field. For leaky-
integrate-and-fire neurons, an analytic expression for the whole spectrum is obtained. In the intermediate case
of continuous velocity fields, the Floquet exponents scale faster than 1 /N2 �namely, as 1 /N4� and we even find
strictly neutral directions in a wider class than the sinusoidal velocity fields considered by Watanabe and
Strogatz �Physica D 74, 197 �1994��.
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I. INTRODUCTION

Understanding the dynamical behavior of highly intercon-
nected systems is of primary importance for neural dynamics
�1�, metabolic cycles �2�, cold atoms �3�, and synchroniza-
tion in general oscillators �4�. A wide variety of interesting
phenomena has been discovered, but a detailed understand-
ing is often lacking, to the extent that even the stability prop-
erties of stationary states in globally coupled oscillators have
not been fully clarified.

In this paper we study an ensemble of N identical rotators,
i.e., dynamical systems characterized by a single dynamical
variable, the “phase” x. This includes neural models of
leaky-integrate-and-fire �LIF� type since the variable x �the
membrane potential� can be interpreted as a phase. This is
done by identifying the maximum value of the potential �the
spiking threshold that, without loss of generality, we assume
to be equal to 1� with the minimum �the resetting value as-
sumed to be equal to 0—see the next section for further
details�, as if they corresponded to the angles 2� and 0.
More precisely, we investigate the stability of splay states
�5�. In a splay state all rotators follow the same periodic
dynamics x�t� �x�t+T�=x�t�� but different time shifts that are
evenly distributed �and take all multiples of T /N, modulus
T�. Splay states have been observed experimentally in mul-
timode laser systems �6� and electronic circuits �7�. Numeri-
cal and theoretical analyses have been performed in
Josephson-junction arrays �5�, globally coupled Ginzburg-
Landau equations �8�, globally coupled laser models �9�, and
pulse-coupled neuronal networks �10�. In the context of neu-
ronal networks, splay states have been also recently investi-
gated in systems with dynamic synapses �11� and in realistic
neuronal models �12�.

The first detailed stability analysis of LIF neurons was
performed by developing a mean-field approach that is based

on the introduction of the probability distribution of the neu-
ron phases �10,13�. The method is expected to work in infi-
nite systems. More recently, another approach has been
implemented �14�, which is based on the linearization of a
suitable Poincaré map and works for any number of oscilla-
tors. As a result, it has been discovered that the spectrum of
Floquet exponents is composed of two components: �i� the
growth rate of “long–wavelength” perturbations—perfectly
identified also with the method described in Ref. �10�; �ii� the
growth rate of “short-wavelength” �SW� perturbations that
cannot be characterized with methods that involve a coarse
graining over small scales. As discussed in �14�, the latter
component plays a crucial role when the width of the trans-
mitted pulses is comparable to or smaller than T /N, since it
may give rise to instabilities of otherwise stable patterns. The
same analysis has also revealed that for finite pulse widths,
SW are marginally stable in the infinite N limit. It is there-
fore important to investigate more thoroughly finite systems
because it is still unclear whether and when they are stable.

Here we address precisely this question, by first imple-
menting a perturbative technique in the standard LIF model
and by then numerically investigating the behavior of a more
general class of rotators, characterized by a nonlinear veloc-
ity field F�x�= ẋ. All of our results indicate that the SW com-
ponent scales as 1 /N2 if and only if F�1��F�0�. Moreover,
we systematically find that the SW component is stable �un-
stable� if F�1��F�0� �F�1��F�0��. Since �F=F�1�−F�0�
is, by definition, the average derivative of F, the two classes
of systems will be identified as decreasing and increasing
fields, respectively.

At the boundary between these two classes of fields, con-
tinuous velocity fields �F�1�=F�0�� turn out to exhibit a
faster scaling to zero of the Floquet SW spectrum. In the case
of analytic functions, many exponents appear even to be nu-
merically indistinguishable from zero. This scenario is coher-
ent with, and in some sense extent, the theorem proved in
�15�, where it has been shown that in the presence of a sinu-
soidal field F=a�t�+sin�2�x+��, one should expect N−3
zero exponents for any dependence of a�t�.
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The paper is organized as follows. In Sec. II we introduce
the model and the event-driven map that is used to carry out
the stability analysis. In Sec. III we derive analytical pertur-
bative expressions for the Floquet spectrum in the case of
LIF neurons. The results are compared with the numerical
solution of the exact equation. In Sec. IV we numerically
analyze several examples of velocity fields to test the validity
of the above mentioned conjectures. Finally, in Sec. V, we
summarize the main results and the open problems.

II. MODEL

We consider a network of N identical neurons �rotators�
coupled via a mean-field term. The dynamics of the ith neu-
ron writes as

ẋi = F�xi� + gE�t� , �1�

where xi represents the membrane potential, E�t� is the
“mean” forcing field, and g is the coupling constant; the
analysis will be limited to the excitatory case, i.e., g�0.
When the membrane potential reaches the threshold value
xi=1, a spike is sent to all neurons �see below for the con-
nection between single spikes and the global forcing field E�,
and it is reset to xi=0. The resetting procedure is an approxi-
mate way to describe the discharge mechanism operating in
real neurons. The function F�x� is assumed to be everywhere
positive �thus ensuring that the neuron is repetitively firing,
i.e., it is suprathreshold�. For F�x�=a−x, the model reduces
to the well-known case of LIF neurons. The field E is the
linear superposition of the pulses emitted in the past when
the membrane potential of each single neuron has reached
the threshold value. By following Ref. �10�, we assume that
the shape of a pulse emitted at time t=0 is given by
Es�t�= ��2t /N�e−�t, where 1 /� is the pulse width. This is
equivalent to saying that the total field evolves according to
the equation

Ë�t� + 2�Ė�t� + �2E�t� =
�2

N
�

n�tn�t

��t − tn� . , �2�

where the sum in the right-hand side �r.h.s.� represents the
source term due to the spikes emitted at times tn� t.

Event-driven map

As anticipated in the introduction, it is convenient to
transform the differential equations into a discrete-time map-
ping. We do so by integrating Eq. �2� from time tn to time
tn+1 �where tn is the time immediately after the nth pulse has
been emitted�. The resulting map reads

E�n + 1� = E�n�e−���n� + Q�n���n�e−���n�, �3a�

Q�n + 1� = Q�n�e−���n� +
�2

N
, �3b�

where ��n�= tn+1− tn is the interspike time interval and, for
the sake of simplicity, we have introduced the new variable

Qª�E+ Ė.

Moreover, the differential Eq. �1� can be formally inte-
grated to obtain

xj�n + 1� = F„xj�n�,E�n�,Q�n�,��n�…

j = 1, . . . ,N − 1; xm�n + 1� � 0, �4�

where m indicates the closest-to-threshold neuron at time n
and the time interval ��n� is determined by imposing the
condition that xm reaches the value 1 at time n+1, immedi-
ately before being reset to zero. Altogether, we have there-
fore transformed the initial problem into a discrete-time map
for N+1 variables: E, Q, and N−1 membrane potentials
�where one degree of freedom is eliminated as a result of
taking the Poincaré section�. A relevant property of identical
mean-field coupled rotators is that the ordering of the local
variables is preserved by the dynamical evolution: all neu-
rons “rotate” around the circle �0,1� �1 being identified with
0� without passing each other. On the other hand, being the
neurons identical, we can change their labels as they are
indistinguishable. By following Refs. �14,16�, it is conve-
nient to start ordering the membrane potentials from the larg-
est to the smallest one and then to introduce a co-moving
reference frame, i.e., to decrease by 1 the label of each neu-
ron �plus 1→N� at each step of the iteration. In this frame,
the label of the closest-to-threshold neuron is always equal to
1 and the splay state is just a fixed point of the transforma-
tion. Accordingly the linear stability analysis amounts to de-
termining the eigenvalues of the corresponding linearized
transformation.

In order to carry out the stability analysis, it is necessary
to derive an explicit expression for
F(xj�n� ,E�n� ,Q�n� ,��n�). This is not generally doable, but
in the thermodynamic limit �N→	� one can exploit the
smallness of ��O�1 /N� and correspondingly set up a suit-
able perturbative expansion. We shall see that in order to
correctly reproduce the stability of the splay state in typical
cases, it is necessary to expand the map to fourth order. In a
few peculiar models, a fully analytic calculation is possible.
This is the case of LIF neurons because of the linear struc-
ture of the velocity field: they will be analyzed in the next
section.

III. LEAKY INTEGRATE-AND-FIRE MODEL

Let us now consider the leaky-integrate-and-fire case for
the suprathreshold neuron, namely, a�1. In the co-moving
frame, Eq. �4� writes as �14,16�

xj−1�n + 1� = xj�n�e−��n� + 1 − x1�n�e−��n� j = 1, . . . ,N − 1,

�5�

with the boundary condition xN=0, while the nth interspike
interval is given by the self-consistent equation,

��n� = ln	 a − x1�n�
a + gH�n� − 1


 , �6�

where
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H�n� =
e−��n� − e−���n�

� − 1
�E�n� +

Q�n�
� − 1

� −
��n�e−���n�

�� − 1�
Q�n� .

�7�

In the absence of coupling �g=0�, e� is obviously equal to
the ratio of the initial �a−x1� and final �a−1� velocity of the
first neuron, since the dynamics reduces to a pure relaxation.
In that case there would be no way to determine � as the
r.h.s. would be independent of it, but with interactions this is
no longer true. As soon as the coupling is switched on, the
velocity starts depending on the evolution of the field E in
the way that it is summarized by the expression H�n�.

The set of Eqs. �3a�, �3b�, and �5�–�7� defines a discrete-
time mapping that is perfectly equivalent to the original set
of ordinary differential equations. It should be noticed that
Eq. �7� is valid for any physically meaningful pulse-width
value �i.e., ��0� including �=1, when there is no diver-
gence or discontinuity. Moreover, in the parameter region
considered in this paper �i.e., g�0 and a�1�, the logarithm
in Eq. �6� is well defined since one can show that H�n� is
always positive.

In this framework, the splay state reduces to a fixed point
that satisfies the following conditions:

��n� �
T

N
, �8a�

E�n� � Ẽ, Q�n� � Q̃ , �8b�

x̃j−1 = x̃je
−T/N + 1 − x̃1e−T/N, �8c�

where T is the time elapsed between two consecutive spike
emissions of the same neuron. A simple calculation yields

Q̃ =
�2

N
�1 − e−�T/N�−1, Ẽ = �Q̃�e�T/N − 1�−1. �9�

The solution of Eq. �8c� involves a geometric series that,
together with the boundary condition x̃N=0, leads to a tran-
scendental equation for the period T. This, in the large N
limit and at the leading order, reduces to the following
simple expression:

x̃j =
eT − ej�

eT − 1
, �10a�

T = ln	 aT + g

�a − 1�T + g

 . �10b�

The lack of any dependence of the period from the pulse
width is due to the fact that in the N→	 limit the forcing

field reduces to Ẽ=1 /T �10,14�. If we assume that a�1
�which corresponds to assuming that the single neuron is
suprathreshold�, we see that in the excitatory case �g�0� the
period T is well defined only for g�1 �T→0, when g ap-
proaches 1�, while in the inhibitory case �g�0�, a
meaningful solution exists for any coupling strength
�T→	 for g→−	�.

A. Linear stability

By linearizing Eqs. �3� and �5� around the fixed point �8�,
we obtain

�E�n + 1� = e−���E�n� + �e−���Q�n� − ��Ẽ − Q̃e−������n� ,

�11a�

�Q�n + 1� = e−����Q�n� − �Q̃���n�� , �11b�

�xj−1�n + 1� = e−���xj�n� − �x1�n�� + e−��x̃1 − x̃j����n� ,

�11c�

and the expression for ���n� can be derived by linearizing
Eqs. �6� and �7�,

���n� = �x�x1�n� + �E�E�n� + �Q�Q�n� , �12�

where �xª�� /�x1 and analogous definitions are adopted for
�E and �Q.

In the co-moving frame, the boundary condition xN�0
implies �xN=0. In practice, the stability problem is solved by
computing the Floquet spectrum of multipliers 
k�,
k=1, . . . ,N+1, corresponding to the linear evolution �A�. It
should be stressed that in general, the solution can be deter-
mined only numerically.

However, it is convenient to rewrite the Floquet multipli-
ers as


k = ei�keT��k+ik�/N, �13�

where �k= 2�k
N , k=1, . . . ,N−1 and �N=�N+1=0, while �k and

k are the real and imaginary parts of the Floquet exponents.
The variable �k plays the role of the wavenumber in the
linear stability analysis of spatially extended systems and
one can say that �k characterizes the stability of the kth
mode. Previous studies �14� have shown that the spectrum
can be decomposed into two components depending on the
index k: �i� k�O�1�; �ii� k /N�O�1�. The first component
corresponds to long-wavelength perturbations that can be
formally analyzed by taking the continuum limit �this was
implicitly done in Ref. �10��; the second component corre-
sponds to “high” frequency oscillations that require taking in
full account the discreteness of the “spatial” index j. This is
clearly illustrated in Fig. 1, where we have plotted the spatial
component �xj of �the real part of� three eigenvectors. The
vector plotted in panel �a� corresponds to �k=0.06� and is
indeed both rather smooth and close to a sinusoidal function.
In the other two panels, we can see that upon increasing the
wavenumber �k, the discontinuous structure of the eigenvec-
tors becomes increasingly evident.

While the eigenvalues of the first component are of order
1, the analysis carried out in Ref. �14� has revealed that the
second component vanishes in the N→	 limit. Therefore it
is necessary to go beyond the zeroth-order result to deter-
mine the stability of a splay state in large but finite system.
As an example, in Fig. 2 we show the spectrum of the
Floquet multipliers of the splay state for excitatory coupling
�g�0� and finite values of N.
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B. Analytical results

In the LIF model, many steps toward the determination of
the Floquet exponents can be performed exactly. We start by
deriving expressions that are valid for any number N of neu-
rons and eventually introduce a perturbative approach to ob-
tain an explicit expression in the large N limit.

1. Exact expressions

We start by introducing the standard Ansatz

�E�n + 1� = 
k�E�n�; �Q�n + 1� = 
k�Q�n� . �14�

From Eqs. �11a� and �11b�

�Q = −
�Q̃


ke
�� − 1

�� , �15�

�E = − 	 ��Q̃

�
ke
�� − 1�2 +

�Ẽ − Q̃ + �Q̃�


ke
�� − 1


�� . �16�

By combining the above equations with Eq. �12�, we find

x� = x̃1 − a +
gQ̃e−��−1��

� − 1
+

g
ke
��

�� − 1��
ke
�� − 1�

�	�Ẽ +
Q̃

� − 1
+ ��Q̃

�1 − 
ke
��

�
ke
�� − 1�


 , �17�

where x� denotes the derivative of x1 with respect to �. From
the evolution equation for �xj, Eq. �11c�, and by assuming
that �xj�n+1�=
k�xj�n�, we obtain


k�xj−1 = e−���xj − �x1� + �x̃1 − x̃j�e−��� . �18�

By using ��=�x1 /x� and introducing the expression �8c� for
x̃j, we find


k�xj−1 = e−��xj +
e�j−1��

eT − 1

�x1

x�

− � 1

x��eT − 1�
+ e−���x1.

�19�

The solution of this recursive equation reads

�xj = − � 1

x��eT − 1�
+ e−�� �x1


k − e−�

+
ej�

x��eT − 1�
�x1


k − 1
+ K
k

jej�. �20�

We can determine the constant K by imposing that the above
equation is an identity for j=1. As a result,

�xj

�x1
= � 1

x��eT − 1�
+ e−��
k

j−1e�j−1�� − 1


k − e−�

−
ej�

x��eT − 1�

k

j−1 − 1


k − 1
+ 
k

j−1e�j−1��. �21�

The equation for the determinant is finally obtained by im-
posing �xN=0,

x��eT − 1�
k
N−1 = − �x��eT − 1� + e��

e�−T − 
k
N−1

1 − 
ke
� + e�

1 − 
k
N−1

1 − 
k
.

�22�

Equation �22� is an exact but implicit expression for all Flo-
quet multipliers that applies for a generic number N of neu-
rons. A numerical solution of Eq. �22� reveals that for finite
N, excitatory coupling, and � smaller than the critical value
�c=�c�g ,N� �see also �13��, the splay state is strictly stable,
although the maximum Floquet exponent approaches zero
for increasing N �14�. In fact, as shown in Ref. �14�, in the
limit N→	, SW modes are marginally stable, i.e.,
�k�k�0.

2. Perturbative expansion

Since the Floquet exponents of the SW vectors are exactly
equal to zero in the infinite N limit, it is natural to investigate
the stability of finite systems in a perturbative way. In par-
ticular, we find it convenient to introduce the smallness pa-
rameter ��1 /N. A posteriori, and in agreement with the
numerical observations in �14�, it turns out that an expansion
up to second order in � is necessary and sufficient to cor-
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FIG. 1. Three instances of the real part of eigenvectors for LIF
neurons for a=3, g=0.4, �=3, and N=200. From top to bottom,
panels �a�–�c� correspond to �=0.06�, 0.34�, and 0.78�.
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FIG. 2. �Color online� Floquet exponent spectra for the LIF
neurons: exact expression �22� �filled red squares�, perturbative ex-
pression �29� �blue line�, and event-driven map correct up to the
fourth order in � �empty black circles�. The parameters are a=3.0,
g=0.4, and �=30.0, N=200.
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rectly determine the leading contribution of the Floquet spec-
trum.

Let us start by expanding the stationary solution for Q̃ and

Ẽ �Eq. �9��,

Q̃ =
�

T
�1 +

�

2
� +

�2

12
�2� , �23a�

Ẽ =
1

T
�1 −

�2

12
�2� . �23b�

Next, we express the Floquet multipliers as


k = ei�ke�k�3

k

N = e�kT�2
, �24�

which amounts to assume that the Floquet exponent is pro-
portional to �2.

By expanding x� and with the help of Eq. �10b�, we obtain

x� = −
1 + � − B�2

eT − 1
, �25�

where

B = −
1

2
+

g�2

T
	 1

12
+

ei�k�eT − 1�
�ei�k − 1�2 
 . �26�

After inserting the above expansions into Eq. �22�, we obtain

�− 1 − � + B�2��
k
N−1 − 
k

N� = − �2�B +
1

2
��e−T − e−i�k�

+ e��1 − 
k
N−1� . �27�

Now, with the help of Eq. �24� and completing the � expan-
sion,

�kT = �B +
1

2
��1 − e−T� . �28�

By finally replacing the definition �26� of B into the above
equation, we obtain an explicit expression of the Floquet
spectrum,

�k

�2 = �k =
g�2

12T2 �eT − 2 + e−T�	1 +
6

�cos �k − 1�
 . �29�

In Fig. 2, Eq. �29� is compared with the numerical but exact
solution of Eq. �22� for N=200, revealing a very good agree-

ment. The divergence of this expression for �→	 indicates
that the SW modes are characterized by a different scaling
behavior for �-like pulses. In fact, as shown in Ref. �14�, the
corresponding exponents do not scale to zero for N→	.
Moreover, it is worth recalling that the stability of networks
with strictly � pulses cannot be inferred by taking the limit
�→	 of the exact �nonperturbative� expressions �14�.

IV. GENERAL CASE

In the previous section we have seen that in the LIF
model the SW component of the spectrum scales as 1 /N2 and
obtained an analytic expression for the leading term. It is
natural to ask whether the observed scaling behavior is pe-
culiar to this system or it is a general characteristics of pulse-
coupled oscillators. For F�x�=a+sin�2�x+��, the general
theorem proved in �15� tells us that the dynamics of the
oscillators is characterized precisely by N−3 zero exponents
independently of the behavior of the forcing field E. There-
fore, it is an example of perfect neutral stability for any N.
For generic velocity fields, it is not possible to obtain ana-
lytic expression, so that one has to rely on approximate ex-
pressions. Since we expect �k→0 for increasing N, it is natu-
ral to follow a perturbative approach from the very
beginning, i.e., from the definition of the event-driven map.
In �14�, it has been shown that a second-order expansion fails
to reproduce the stability properties of the LIF model even
on a qualitative level. In fact, the Floquet exponent of the
single-step map is of order �3. This would naively suggest
that a third order is sufficient; however, the eigenvalue equa-
tion involves an “integration” over N steps. Therefore, it is
necessary to control the accuracy of the single iterate of the
map up to order 1 /N4 what is incidentally guaranteed by
standard integration algorithms like fourth-order Runge-
Kutta. Here he have preferred to determine an explicit ex-
pression for the map to be thereby linearized and used to
determine the entire Floquet spectrum. The results plotted in
Fig. 2 confirm that upon including terms up to O�1 /N4�, we
are able to reproduce the expected results.

With the goal of identifying the typical scaling behavior
of the Floquet spectrum, in the following we investigate vari-
ous types of functions F�x�, starting from smooth periodic
functions. As mentioned above, if F�x� contains just the main
harmonic, i.e., if F�x�=a−sin�2�x�, we expect N−3 zero
exponents �15�. In Fig. 3�a�, we plot the spectrum for a=3,
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FIG. 3. �Color online� Floquet spectra: �a� single harmonic; �b� three harmonics. The parameters are a=3.0, g=0.4, and �=30.0.

STABILITY OF SPLAY STATES IN GLOBALLY COUPLED… PHYSICAL REVIEW E 80, 036209 �2009�

036209-5



g=0.4, �=30, and different numbers of rotators. The data
indeed show that four exponents remain finite for N→	, in
agreement with the theoretical results �15�, since in our sys-
tem there are N+1 degrees of freedom. Moreover, we can
see that the vast majority of the exponents are equal to zero
within numerical accuracy. This is even beyond our expecta-
tions because of the finite �fourth-order� accuracy of the nu-
merical computations.

In the presence of more harmonics, there are no
theoretical predictions which can guide us. In Fig. 3�b�, we
present the results for F�x�=3−sin�2�x� /2−0.1 sin�4�x�
−0.01 sin�6�x�. There we see that there are no substantial
differences from the previous case, the main novelty being
that the number of �negative� exponents which remain finite
for N→	 is definitely larger than 4, probably 24 or 26 with
our numerical accuracy. The presence of many zero expo-
nents is confirmed by simulations performed for different
parameter values. Whether the “numerical zeros” correspond
to exact zeros and thereby to some conservation laws is how-
ever an open question.

The choice of a periodic function F�x� such as
a−sin�2�x� is natural in the context of coupled rotators,
where x is a true phase and the 0, 1 values can be identified
with one another as they correspond to angles differing by
2�. In the LIF model, 0 and 1 correspond to two different
membrane potentials �actually, the minimum and maximum

accessible values� and there is no reason a priori to expect
F�1�=F�0�, namely, �F=F�1�−F�0�=−1. It is therefore im-
portant to understand whether the different scaling behavior
is to be attributed to the presence of a “discontinuity” in the
velocity field and if the sign of the difference F�1�−F�0�
matters or not. In order to clarify this point we have investi-
gated two parabolic fields with opposite concavities, but
identical �and negative� nonzero value of the velocity differ-
ence at the extrema of the definition interval, i.e., �F=−0.3
�see Fig. 4�a� for their graphical representation�. The results
plotted in Fig. 4�b� indicate that the presence of nonlineari-
ties in the velocity field do neither affect the scaling of the
spectrum, which is still proportional to �2, nor the overall
stability: the whole branch is strictly negative.

As a next step, we have investigated two increasing para-
bolic velocity fields with opposite concavities, but identical
and positive difference at the extrema �F=0.3 �see Fig. 5�a�
for a graphical representation�. The results plotted in Fig.
5�b� confirm once again the �2 scaling. However, the stability
has changed: now the SW component is positive, indicating
that the splay state is weakly unstable. Altogether, we can
summarize the results under the conjecture that all discon-
tinuous velocity fields �i.e., where F�1��F�0�� are charac-
terized by exponents that scale as �2. Moreover, the stability
depends on whether on the average the field increases or
decreases. The analysis of several other velocity fields has
confirmed this conjecture.
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FIG. 4. �Color online� �a� The two considered velocity fields: upper and lower curves correspond to: F�x�=1.3+0.7x−x2 �solid line� and
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In between the two classes of increasing and decreasing
fields, there are continuous fields. The neutral stability
of the sinusoidal fields is logically consistent with the
observation that the stability depends on the sign of �F.
In order to further explore the generality of the scenario,
we have analyzed two other cases: �i� a parabolic
field F�x�=1.3−x�x−1�; �ii� a sinusoidal field F�x�
=1.3−0.25 sin��x�. Both fields are C�0�, but not C�1�, since
the derivative in x=1 and x=0 differ from one another. In
Fig. 6 we see that the spectra scale as 1 /N4. This confirms
that continuous functions exhibit an intermediate behavior
between positive and negative discontinuities. The scaling
behavior, as �4, has been verified by employing an event-
driven map correct to order �5. Moreover, it is also interest-
ing to notice the difference with respect to the analytic sinu-
soidal functions. In fact, it seems that exactly zero exponents
are detected only for analytic velocity fields.

To further verify the scenario, we have introduced a ve-
locity field

F�w� = a + 4w�w − 1� ,

w = �x� + x�/2, �30�

parametrized by the exponent �. The function is periodic but,
upon increasing �, it becomes increasingly steeper in the
vicinity of x=1 as shown in Fig. 7�a�. For ��10 we observe
the same behavior found for other periodic functions, i.e., the
spectrum scales rapidly to zero �like 1 /N4�. To exemplify
this case let us consider �=2, as shown in Fig. 7�b� the
eigenvalue �N/2 decreases as �1 /N2 for sufficiently large N.
Please notice that the eigenvalues are approaching zero from
positive values in this case. For ��102 the situation be-
comes more complicated: for sufficiently small N values �N/2
is negative and almost constant �indicating an 1 /N2 scaling
of the Floquet eigenvalues�, while by increasing N it be-
comes positive and �N/2→0 only for very large N,
�N/2→0 �see Fig. 7�c��. By increasing �, the 1 /N2 scaling
region widens, but the overall behavior is maintained, as
shown in Fig. 7�d� for �=10 000. This suggests that for not
too large values of N, the system perceives the field as if it
was discontinuous, while at large N it crosses to continuous
fields. This crossing is joined to a change in sign from nega-

tive values �as expected for discontinuous fields with
�F�0� to positive ones.

Finally, for the sake of mathematical generality, we have
investigated the role of an additional intermediate disconti-
nuity in the velocity field. More precisely, we have examined
the piecewise linear model,

F�x� = �a − b/2 − x , for x � 0.5

a + b/2 − x , for x � 0.5,
� �31�

with a discontinuity of size b at x=0.5. As shown in Fig.
8�a�, as a result of the discontinuity, the Floquet spectrum
widens to cover a thick band, which is filled in an increas-
ingly uniform way, upon increasing N. Depending whether
the discontinuity is positive or negative, the band develops
toward higher or smaller values, respectively �see Fig. 8�b��,
while the standard LIF spectrum �solid line� represents the
locus of minima or maxima, respectively, of such bands. Due
to the finite thickness of the band itself, unstable SW modes
can appear even for �F�0. Finally, for b=1, when
�F=F�1�−F�0�=0, the SW modes scale faster than 1 /N2 as
for standard continuous functions. Altogether, the presence
of an additional discontinuity does not modify the scaling
behavior, which is still controlled by the sign of �F.

V. CONCLUSIONS AND OPEN PROBLEMS

In this paper we have shown that the stability of splay
states in pulse-coupled oscillators with generic velocity fields
F�x� can be determined by rewriting the dynamics as event-
driven maps. In particular we focused our attention on the
SW modes. For discontinuous velocity fields, like that asso-
ciated to leaky-integrate-and-fire neurons, we find that all
SW modes are stable, when the field on the average de-
creases �i.e., �F�0�, and unstable in the opposite case. No-
tice that this weak instability cannot be captured by the
mean-field approach introduced in �10�, as the coarse grain-
ing washes out SW modes. It is instructive to compare the
role of �F, with the results of Refs. �17,18�. While studying
an excitatory network of globally coupled rotators �in the
limit of �-like pulses�, Mirollo and Strogatz proved that the
synchronous state is fully stable when x��� is concave-down
�17�, where the phase � is nothing but the time variable
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FIG. 6. �Color online� Floquet spectra: �a� continuous parabolic field F�x�=1.3−x�x−1�; �b� continuous sinusoidal field
F�x�=1.3−0.25 sin��x� with period 2. The data refer to g=0.4 and �=6 and have been obtained by employing an event-driven map
including terms up to order O�1 /N5�.
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�apart from a scaling factor� and the evolution refers to the
single neuron dynamics ẋ=F�x�. Recently, these results have
been complemented by the observation that clustered states
are stable �while the synchronous regime is unstable�, when
x��� is concave-up �18–20�. It is easy to verify that in a
linear LIF neuron, the change in concavity is one-to-one con-
nected with a change in sign of �F. More in general, a
concave-up �-down� x�t� implies that �F�0 ��F�0�, while
the opposite implication does not hold. For instance, for
F�x�=1.3−sin���9x−1� /4� �x� �0.1��, x�t� exhibits even
two changes of concavity and yet we find that the SW modes
are stable and scale as 1 /N2, as expected, since �F=−�2 /2.
Altogether, the condition arising from the sign of F is more

general than that based on the sign of the concavity of x�t�,
but it refers to SW modes only.

Naively, one might think that our results follow from the
fact that �F is the average derivative of the velocity field in
the interval �0,1�. If, on the average, ẋ= ��F�x, it is natural to
expect exponential instability when �F�0, stability in the
opposite case, and marginal stability for �F=0. However, to
leading order, all SW modes are “marginally” stable. Pre-
sumably, there is some truth in the argument, but some re-
finements are required to put it on a firm basis. Furthermore,
the 1 /N2 scaling of the Floquet spectrum has been so far
rigorously proved for LIF neurons and has been confirmed
by the numerical analysis of several nonlinear fields. This
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includes the well-known exponential integrate-and-fire neu-
rons �21�—which, having a discontinuous velocity field with
�F�0, are consistently characterized by stable SW modes.

The intermediate case of continuous velocity fields pre-
sents even more subtleties. The are generically characterized
by a 1 /N4 scaling to zero, but we are unable to conclude
whether the scaling law is entirely determined by the analy-
ticity properties of the velocity field. Anyway, for fields com-
posed of a few harmonics, it appears that all Floquet expo-
nents �with the exception of a finite number of them� are
equal to zero. These results suggest that perfectly marginal
modes exist in a wide range of cases than that those proved
in �15� and shown in �22�. The question is not of purely
academic interest since analytic velocity fields are generi-
cally encountered when dealing with coupled rotators, where

x is a true phase. Furthermore, the so-called quadratic
integrate-and-fire neurons �23� belong to this class, as the
velocity field is F�x�=dx�1−x�+e and it is therefore continu-
ous. We have verified that this model is not an exception, as
its short-wavelength spectrum scales faster than 1 /N2.
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